A CONJECTURE ON THE NUMBER OF CONJUGACY CLASSES IN A p-SOLVABLE GROUP*

BY

M. J. IRANZO, GABRIEL NAVARRO AND F. PÉREZ MONASOR

Departament d'Algebra, Facultat de Matematiques Universitat de Valencia, 46100 Burjassot, Valencia, Spain e-mail: gabriel@vm.ci.uv.es and perezp@vm.ei.uv.es

ABSTRACT

If G is a p-solvable group, it is conjectured that $k(G/\mathbb{O}_p(G)) \leq |G|_{p'}$. The conjecture is easily obtained for solvable groups as a consequence of R. Knörr's work on the $k(GV)$ problem. Also, a related result is obtained: $k(G/\mathbb{F}(G))$ is bounded by the index of a nilpotent injector of G.

1~

It is the aim of this note to raise the following question:

If p is a prime, G is a finite p-solvable group and $k(G)$ is the number of conjugacy classes of G, is it true that $k(G/\mathbb{O}_p(G)) \leq |G|_{p'}$?

The short proof of our Theorem A below shows that this is the case whenever G is solvable. This result is obtained as an easy consequence of Knörr's work on the $k(GV)$ -conjecture ([3]). The general problem seems to rely on the Simple Group Classification. (M. Isaacs, in private communication, has given a positive answer to the question above for groups with abelian Sylow p -subgroups without using the classification, however.)

Also, a related result is shown in our Theorem B: if G is a solvable group, then $k(G/\mathbf{F}(G))$ is bounded by the index of a nilpotent injector of G.

These two results combined suggest that, perhaps, there is an important number of Fitting classes $\mathcal F$ for which, in solvable groups, $k(G/G_{\mathcal F})$ is bounded by the index of an $\mathcal{F}\text{-injector.}$

^{*} Research partially supported by DGICYT.PB 90-0414-C02-01. Received October 18, 1994

186

THEOREM A: If G is a solvable group, then $k(G/\mathbb{O}_p(G)) \leq |G|_{p'}$.

We need a well known result on conjugacy classes due to P. X. Gallagher.

LEMMA: *If G is a finite group and* $N \triangleleft G$, then $k(G) \leq k(G/N)k(N)$.

Proof: See [1]. \blacksquare

Proof of Theorem A: We argue by induction on $|G|$.

It is clear that we may assume $\mathbb{O}_p(G) = 1$, so we are forced to prove that $k(G) \leq |G|_{p'}$.

If $1 < N$ is a normal subgroup of G and $M/N = \mathbb{O}_p(G/N)$, by the inductive hypothesis, we have that

$$
k(G/M) \leq |G/N|_{p'}.
$$

Now, if $M < G$, again by induction, we have that

$$
\mathrm{k}(M) \leq |N|_{p'}
$$

since $\mathbb{O}_p(M) = 1$ and $|M|_{p'} = |N|_{p'}$. Therefore, if M is proper in G, the theorem follows from the lemma.

So we may assume that $G = VP$, where V is a normal elementary abelian q-group of G (q a prime different from p) and P is a Sylow p-subgroup. Now, V is a faithful GF(q)[P]-module and by R. Knörr's theorem (7.4 of [3]), it follows that

$$
\mathsf k(G)=\mathsf k(VP)\leq |V|=|G|_{p'}|
$$

as required. \Box

,

The aim of this section is to prove Theorem B.

THEOREM B: Let G be a *solvable group* and *let I be a nilpotent injector of G. Then* $k(G/F(G)) \leq |G: I|.$

This will be obtained as a consequence of the following result.

THEOREM: Let *G* be solvable and write $F = \mathbb{F}(G)$ and $Z = \mathbb{Z}(F)$. Let *I* be a *nilpotent injector of G. Then* $k(G/Z) \leq |G: I|k(F/Z)$.

Proof: We argue by induction on $|G|$. We freely use the results of A. Mann in [4]. Write $C_p = \mathbb{C}_G(F_{p'})$ for each prime divisor p of F. We have that $C_p \triangleleft G$ and that C_p contains the Sylow p-subgroup of I. Thus $N = \prod C_p$ is a normal subgroup of G containing I. In particular, $F = \mathbb{F}(N)$ and I is a nilpotent injector of N. If $N < G$, induction yields that $k(N/Z) \leq |N: I|k(F/Z)$. Since $k(G/Z) \leq k(N/Z)|G: N|$, the result follows in this case. We can thus assume that $\prod C_p = G$.

Observe that $Z \subseteq C_p$ for all p. We claim that in fact $C_p \cap \prod_{q \neq p} C_q = Z$. To see this, it suffices to observe that C_p centralizes $F_{p'}$ and the product centralizes F_p , and so the intersection centralizes F. Since $C_G(F) \subseteq F$, the claim is proved. Hence, it follows that the group G/Z is the internal direct product of its subgroups C_p/Z and therefore $k(G/Z) = \prod k(C_p/Z)$.

If $C_p = G$ for some prime p, then $F_{p'} \subseteq \mathbb{Z}(G)$. But $I_{p'}$ centralizes F_p and hence $I_{p'} \subseteq \mathbb{C}_G(F) \subseteq F$. Thus I/F is a p-group and $|G/F|_{p'} \leq |G: I|$. In this case, $F/Z = \mathbb{O}_p(G/Z)$, and so by Theorem A, we have $k(G/F) \leq |G/F|_{p'} \leq |G: I|$. Thus

$$
k(G/Z) \leq k(G/F)k(F/Z) \leq |G: I|k(F/Z),
$$

as required. We can thus assume that $C_p < G$ for all primes p.

Write $E_p = \mathbb{F}(C_p) = C_p \cap F$ and observe that $F_p \subseteq E_p$. It follows that $Z = \mathbb{Z}(E_p)$. Now $C_p \cap I = J_p$ is a nilpotent injector of C_p . The inductive hypothesis applied to C_p yields that

$$
k(G/Z) = \prod k(C_p/Z) \le \prod |C_p: J_p| \prod k(E_p/Z)
$$

and our task now is to estimate each of the products on the right, above.

Recall that G/Z is the direct product of the subgroups C_p/Z . Write $E =$ $\prod E_p$ and note that E/Z is the direct product of its subgroups E_p/Z . Thus $\prod k(E_p/Z) = k(E/Z)$. But $E \subseteq F$ and in fact $E = F$ since E_p contains F_p . Thus $\prod k(E_p/Z) = k(F/Z)$.

Similarly, write $J = \prod J_p$ and note that *J* is a subgroup and that J/Z is the direct product of its subgroups J_p/Z . It follows that $\prod |C_p: J_p| = |G: J|$. Since the Sylow p-subgroup of I is contained in C_p , it is contained in J_p , and it follows that $I \subseteq J$. Thus $\prod |C_p: J_p| \leq |G: I|$. The result now follows.

Proof of Theorem B: Apply the theorem above to the group $\overline{G} = G/\Phi(G)$. Note that $\overline{F} = \mathbb{F}(\overline{G})$ is abelian and that \overline{I} is contained in a nilpotent injector \overline{J} of \overline{G} , where $I \subseteq J \subseteq G$. The theorem then yields

$$
k(G/F) = k(\overline{G}/\overline{F}) \leq |\overline{G}:\overline{J}| = |G:J| \leq |G:I|,
$$

as required. \blacksquare

There are two corollaries on character theory that, perhaps, are worth mentioning.

COROLLARY A: *Suppose that G is a solvable group and let* $\theta \in \text{Irr}(\mathbb{O}_p(G))$ *be G*-invariant. Then $|\text{Irr}(G|\theta)| \leq |G|_{p'}$.

COROLLARY B: *Suppose that G is a solvable group and let* $\theta \in \text{Irr}(\mathbb{F}(G))$ be *G*-invariant. Then $|\text{Irr}(G|\theta)| \leq |G: I|$, where *I* is a nilpotent injector of *G*.

Proof of Corollaries A and B: Recall that if $\theta \in \text{Irr}(N)$ is G-invariant, then $|\text{Irr}(G|\theta)|$ is the number of the so-called θ -special conjugacy classes of G/N , by Problem (6.10) of [2]. Now, the result follows by applying Theorems A and B. **I**

References

- [1] P. X. Gallagher, *The number of conjugacy classes in a finite group,* Mathematische Zeitschrift 118 (1970), 175-179.
- [2] I. M. Isaacs, *Character Theory of Finite Groups,* Academic Press, New York, 1976.
- [3] R. Knörr, *On the number of characters in a p-block of a p-solvable group*, Illinois Journal of Mathematics 28 (1984), 181-210.
- [4] A. Mann, *Injectors and normal subgroups of finite groups,* Israel Journal of Mathematics 9 (1971), 554-558.